5143

HOST-HOST PROTOCOL

Document No. 1

Steve Crocker
Chairman,
Network Working Group

3 August 1970

3804 Boelter Hall

UCLA

Los Angeles, California
90024

UCSB
(3)

INTRODUCTION

The ARPA network is a store-and-forward message process:lng system which
comnects together a variety of computers across the country. A
computer attached to the network is called a Host.

The network itself consists of a set of identical, small coamputers,
which are located close to the Hosts and are comnected to each other
by 50 kilobit-per-second leased lines. These small computers are
slightly modified Honeywell DDP-516 computers, and are called Interface
Message Processors (IMPs).

Each Host is connected to a single IMP but an IMP may be connected

. to as many as four Hosts,

At the time of this writing, eight Hosts are commected to elght IMPs.
A diagram of the current network is shown in figure 1.

MIT (6)

BBN (5)
SRI (2)

The current ARPA network. The
uc numbers are the Host addresses.

(1) RAND (7)

Flgure 1

The prime contractor for the network is Bolt, Beranek and Newman, Inc.,
(BBN). BBN has specified how IMPs and Hosts are connected and what the
functional specifications of the IMPs are. These specifications are
contained in BEN report #1822 [1]. Broader information is contained in
the set of five papers presented at the Spring Joint Computer Conference
in May, 1970 (2, 3, 4, 5, 6].

The BBN specifications detall how information is transmitted from one
Host to another. We call these specifications the first level protocol
or Host-IMP protocol.

Since the Hosts are predominately run under a time-sharing or multipro-
gramming discipline, additicnal specifications are necessary to extend

the protocol to the process or user level. The Host organizations have
the responsibility for these additional specifications.and they have
formed a Network Working Group (NWG). The NWG has formulated a second
level or Host-Host protocol which extends the first level protocol. The
development of this protocol has been documented informally in Network
Working Group Requests for Comments. The purpose of this document is to
present the version of the Host-Host protocol which has been agreed
upon by the Network Working Group. BBN report #1822 is prerequisite to
understanding this document, but this document should be otherwise
self-contained.

Prospective implementers of thls protocol are invited to contact the
network staff at UCLA if assistance 1s desired, and we strongly
recommend that contact be made in any case.

Inquiry should be addressed to
Steve Crocker
3804 Boelter Hall
UCLA
Los Angeles, California 90024

phone (213) 825-2368

IMP PROTOCOL

The reader is assumed to be famliliar with the concepts of messages,
leaders, marking, padding, links, RFNM's, regular messages and con-
trol messages as presented in the BBN report. In order to avold
ambiguity, I use the term irregular message instead of control message
to mean messages with non-zero type. To be precise about whether a
message is traveling from a Host to its IMP, or from the IMP to a Host,
I use the notation xHI to refer to messages sent from Host to IMP,

and xTH to refer to messages sent from IMP to Host. The "x" is re-
placed by the message type. Thus a Host recelves a RFNM if it receives
a 5TH message.

In regular messages, the Host and 1link field tell where the message
came from or goes to and over which 1link. In most irregular messages
the Host and 1link field refer to a particular link but the message
itself travels only between a Host and its (locally connected) IMP.
The sole exception is the message type 5. 5IH messages are RFNM's,
and these originate in foreign IMPs. SHI messages are treated exactly
like OHI messages except they do not enter the foreign Host.

As an aid to the Host-Host protocol, BBN has agreed to add the new
irregular messages 11HI and 12TH, and to modify the meaning of
message 11TH. These changes are recent and have not yet appeared as
revisions to BBN report #1822. These new specifications are presented
below in the section on flow control.

In order to provide greater flexibility for Hosts sending regular
messages, all regular messages have marking. Marking is a (possibly
null) sequence of O bits followed by a 1 bit, and it comes immediately
after the leader. Immediately following the marking is the data-
carrying portion of the message, or text. OHI messages consist of
leader, marking and text while OIH messages consist of leader, marking
text and padding.

DESIGN CONCEPTS

Although there is little uniformity among the Hosts in either hard-
ware or operating systems, the notion of multiprogramming daminates all
of the systems. Each Host can concurrently support several users,
with each user running one or more processes. Many . of these processes
may want to use the network concurrently, and thus a fundamental
requirement of the Host-Host protocol is to provide for process-to-
process cammnication over the network. Since the Host-IMP protocol
only takes cognizance of Hosts, and since the several processes in
execution within a Host are usually independent, it 1s necessary for
the Host-Host protocol to provide a richer addressing structure.

Another.:factor which influenced the protocol design is the belief that
typical process-to-process communication is not based on solitary
messages, but upon a sequence of messages. One example i1s the sending
of a large body of information such as a file from one process to
another. Another example is an interactive conversation between two
processes with many exchanges.

These considerations led to the notions of commections, a Network
Control Program, a control link, control commands, and sockets.

A comnection is an extension of a link. A comnection connects two
processes so that output from one process is inmput to the other. Con-
nections are simplex, so two connections are needed if two processes
are to converse in both directions.

Processes within a HOST cammunicate with the network through a Network
Control Program (NCP). In most HOSTs, the NCP will be part of The
executive, so that processes will use sysgen calls to camunicate with

it. The primary function of the NCP is to establish connections, break
connectlons, and control flow.

In order to accomplish its tasks, a NCP in one HOST must communicate
with a NCP in another HOST. To this end, a particular link between each
pair of HOSTs has been designated as the control link. Messages
recelved over the control link are always interpreted by the NCP as a
sequence of one or more control commands. Messages sent over the
control link are called control messages.* As an example, one of the
kinds of control cammands is used to assign a link and initiate a
connection, while another kind carries notification that a comnection
has been terminated.

#Note the difference in usage. Here, control messages are regular

messages sent over the control link. IMPs take no notice of control
messages. We use the term irregular message for messages of non-zero
type. Irregular messages are treated specifically by IMPs; BEN uses
the term control message for these. '

A major issue is how to refer to processes in a foreign HOST. Each
HOST has some internal naming scheme, but these various schemes often
are incompatible. Since it is not practical to impose a common internal
process naming scheme, an intermediate name space was created with a
separate portion of the name space given to each HOST. It is left to
each HOST to map internal process identifiers into its name space.

The elements of the name space are called sockets. A socket forms one
end of a connection, and a comnection is fully specified by a pair of
sockets. A socket is identified by a Host number and a 32 bit socket
number. The same 32 bit number in different Hosts represents different
sockets.

A socket 1is either a receive socket or a send socket, and is so marked
by its low-order bit (0 = receive; 1 = send). This property is called
the socket's gender. The sockets at either end of a comnection must be
of opposite gender.

Except for the gender, this protocol places no constraints on the
assigmment of socket numbers within a Host. However, the following
ideas have gained currency in the Network Working Group and have
motivated the protocol design. Some of these ideas probably will be
included in the next layer of protocol.

A socket number is envisioned as the concatenation of a high-order,
24-bit user number and a low-order 8 bit tag. Each user is assigned a
24-bit user number which uniquely identifies him throughout the network.
Generally this will be the 8-bit HOST number of his hame HOST, followed
by 16 bits which uniquely identify him at that HOST. Provision can also
be made for a user to have a user number not keyed to a particular HOST,
an arrangement desirable for mobile users who might have no hame HOST

or more than one hame HOST. This 24-bit user number is then used in

the following manner. When a user signs onto a HOST, his user number

is looked up. Thereafter, each process the user creates is marked with
his user number. When the user signs onto a foreign HOST via the network,
his same user number is used to mark processes he creates in that HOST.
The foreign HOST cbtains the user number elther by consulting a table

at login time, as the hame HOST does, or by notlcing the identification
of the caller. Thus all the processes which a user creates are marked
with his user number. At each Host, there are 128 sockets of each
gender for each user number. We envision that a process may request

the use of only those sockets whose high-order 24 bits match the process'
user number. A request is granted if the socket is not otherwise in use.

We now make two observations. First, a local socket requested by a
process camnot already be in use unless it 1s by some other process
owned by that user. Second, processes marked with the same user number
need only know the low—order 8 bits of foreigh socket numbers. It is
thus fairly easy for a user to comnect his processes across the network;
yet the ability to connect to other users' processes remains.

'NCP FUNCTIONS

2

\D

The functions of the NCP are to establish connections, terminate
comections, control flow, transmit interrupts, and respond to test
messages. These functions are explained in this section, and
control camands are introduced as needed. In the next section,
the formats of all the control cammands are presented together.

Comnection Establishment

The commands used to establish a comnection are STR and RTS.

8 32 32
STR send socket receive socket

8 - 32 8
RTS receive socket send socket 1link

The STR comand is sent from a prospective sender to a prospective
receiver, and the RIS fram a prospective receiver to a prospective
sender. The send socket field names a socket local to the prospective
sender; the receive socket field contains a socket local to the prospec-
tive receiver. In the RIS command, the link field assigns a link.

These two commands are referred to as requests-for-cormection (RFC). A
STR and an RTS match if the receive socket flelds match and the send
socket fields match. A connection is established where a matching

pair of RFC's have been exchanged. Hosts are prchibited from establish-
ing more than one connection to any local socket.

With respect to a particular connection, the Host containing the send
socket is called the sending Host and the Host containing the receive
socket 1s called the receiving Host. Some control information such as
RFNM's, other IMP-to-Host messages, and flow control commands(see

below) travel from "receiving" Hosts to "sending" Hosts. A Host may
connect one of its receive sockets to one of its send sockets, thus
becaming both the sending Host and the recelving Host for that connection.

\%A Host sends an RFC either to request a comnection, or to accept a

\b

foreign Host's request. Since the same command is used for both
requesting and accepting the establishment of a comnection, 1t is
possible for both sides to initiate the connection. One consequence 1s
that a family of processes may be created with comnection initiating
actions built-in, and the processes within this family may be started
up in arbitrary order.

There is no prescribed lifetime for an RFC. Hosts are permitted to queue
incoming RFC's and withold a response for an arbitrarily long time. It

is reasonable, for example, for an NCP to queue an RFC which refers to
some currently unused socket until some process grabs the socket and tells
the NCP to accept or reject the request. Of course, the Host which sent
the RFC (or the process within that Host) may not be willing to wait for
an arbitrarily long time, so it may abort the request.

6

Conmnection Termination

The command used to terminate a commection is CLS.

8 32 32

CLS | . my socket your socket

The my socket field contains the socket local to the sender of the
CLS comand. The your socket field contains the socket loecal to the
recelver of the CLS command.

Each side must send and receive a CLS command before a connection is
canpletely terminated and the sockets are free to participate in other
comnections. It is not necessary that both RFC's be exchanged before a
comection 1s terminated.

After a comnection is established, CLS commands sent by the receiver
and sender have slightly different effects. CLS commands sent by the
sender indicate that no more messages will be sent over the commectilon.
This command must not be sent if there is a message 1n transit over the
connection.

A CLS camnand sent by the receiver acts as a demand on the sender to
terminate transmission. However, since there is a delay in getting the
CLS command to the sender, the receiver must expect more input.

If a Host wishes to refuse a request for comnection, it sends back a
CLS instead of a matching RFC. The refusing Host then walts for the
initiating Host to acknowledge the refusal by returning a CLS.

Similarly, if a Host wishes to abort its outstanding request for a
comnection, it sends a CLS cammand. The foreign Host is cbliged to
acknowledge the CLS with its own CLS.

Under all cifcumstances, a Host should quickly acknowledge an incoming
CLS so the foreign Host can purge its tables. '

Because the CLS command is used both to initiate closing, aborting and
refusing a comnection, and to acknowledge closing, aborting and refusing
a connection, the various race conditions do not lead to ambiguous or
erroneous results. Suppose, for example, that Host A sends Host B a
request for cornection, and then A sends a CLS to Host B because it is
tired of waiting for a reply. However, just when A sends its CLS to B,
B sends A a CLS to refuse the connection. A will "believe" B is
acknowledging the abort, and B will "believe" A 1s acknowledging its
refusal, but the outcome will be correct.

DA

Flow Control

After a comection is established, the sending Host sends messages over
the agreed upon link to the receiving Host. The receiving Host takes
messages from its IMP and queues them for its various processes. Since
it may happen that the messages arrive faster than they are disposed
of, some mechanism is required which permits the receiving Host to
quench the flow from the sending Host.

The flow control mechanism requires the receiving Host to allocate
buffer space for each comnection and to notify the sending Host of how
much space is available. The sending Host keeps track of how much roam
is available and never sends more data than it believes the recelving
Host can accept.

To implement this mechanism, the sending Host keeps a counter associated
with each comnection. The counter is initlalized to zero when the
connection is established, is increased by ALL control commands sent
from the receiving Host (see below), and is decremented by 100 plus

the text length in bits of any message sent over the comnectian. The
sending Host may also return all or part of its allocation with a RET
camand (see below). The purpose of the constant 100 is to approximate
the per-message overhead in the receiving Host; since the receiving
Host presumably keeps a counter which is incremented and decremented
according to the same rules, the receiving Host can be cognizant of
small errors between the value of the counter and the actual space
avallable and easily compensate for them.

The sending Host never sends a message over a connection if it would
cause the counter to go below zero. There are thus two conditions the
NCP must check before sending a message: whether the RFNM is back for
the required link, and whether the counter is high enough.

Ideally, the receiving Host will allocate some buffer space as soon as
the commection is established. As messages arrive, they occupy the
allocated buffer space. When the receiving process absorbs the wait-
ing text from the buffer, the NCP fires back a new allocation of space
for that commection. The NCP may allocate space even if the receiving
process has not absorbed waiting text if it believes that extra buffer
space is appropriate. Similarly, the NCP may decide not to reallocate
buffer space after the recelving process makes it available.

\D2 \\The control command which allocates space is

8 i 108 14 32 l
%
ALL | 1ink space

This camand is sent only fram the receiving Host to the sending Host.

In order to reclaim allocated space, because the space is not being used
or for any other reason, the recelving Host may request that the sending
Host return all or part of its current allocation.

The control comand for this request is

481% él

GVB {link | frac

This comand is sent only fram the receiving Host to the sending Host.
The frac is an eight-bit binary fraction, and it specifies what part

of the sender's current allocation the sender may keep. Thus a fraction
of zero means the sender must return its whole allocation.

Upon receiving a GVB command, the sending Host must return at least
the requested allocation. The comand for doing so is

8 8 32

RET | 1ink space

Some Hosts will allocate only as much space as they can guarantee for
each link. These Hosts will tend to use the GVB command only to
reclaim space which is being filled very slowly or not at all. Other
Hosts will allocate more space than they have, so that they may use
their space more efficiently. Such a Host will then need to use the
GVB camand when the input over a particular link comes faster than
it 1s being processed.

Naturally, the efficacy of this strategy depends upon how quickly

the GVB command can be sent to the sending Host. In order to notify
the sending Hosts in minimal time, the IMP's provide a special service
which utilimes returning RFNM's to convey flow control information.

A receiving Host may send its IMP a 10HI message, which instructs the
IMP to set a "cease bit for the named link. The IMP examines the cease
bit whenever it constructs RFNM; if the cease bit is set, the IMP sends
back a speclal RFNM and sends a 12TH message to the local (receiving)
Host. When the special RFNM reaches the sending IMP, it is converted
to a 10IH message instead of the standard 5IH message.

The sending Host interprets the 10IH message as equivalent to both a
RFNM (5IH) and a GVB command with a fraction of zero. Upon receiving
a 10IH message, the sending Host returns all of its current allocation
for the named link by sending a RET command.

This mechanism of "piggybacking" a GVB on a RFNM is faster, in general,
than sending a regular GVB command. However, it may happen that the
sending Host suspends transmission at the same time the receiving Host
is sending its 10HI message. Therefore, some means is desirable to reset
the cease bit in the IMP. The IMP resets the cease bit if it has not

been examined for approximately a minute or if it receives an 11HI
message. In response to receiving the 11HI message or in response to
timing out the cease bit, the IMP sends an 111H message to the HOst.
The IMP will not return an 111H message if it receives an 11HI message
and the cease bit is already off.

There are some race conditions which can develop, and to resolve them,
it 1s necessary to know the order in which the IMP sends messages to

its Host. The IMP maintains three queues of messages for Host, two

for regular messages (OHI) and one higher priority queve for "irregular"
messages. All irregular messages (message type is non-zero) consists
of only a leader and padding. No regular message 1s sent to a HAst

if there are any irregular messages waiting. Of course, irregular
messages may be put into the queue for the Host while a regular message
is moving from the IMP into the Host, and the irregular message will
not be sent until the regular message is finished.

Of particular interest is the timing of RFNM creation and the consequent
examination of the cease bit. A RFNM is bullt using the buffer of the
first packet of the message. Thus RFNM's are reutrned after the message
has left the IMP for one packet messages, but are returned before the
message has left the IMP for multi-packet messages. The cease bit is
examined when the RFNM is built.

Interrupts

In addition to the simplex transmission path provided by a connection,

a facility for sending "interrupts" in either direction. By "interrupt"
it is meant that a control message is sent frrom one Host to another and
this control message refers to an established comnection. The NCP which
recelves this control cammand should notify the process attached to the
socket that an interrupt has arrived; no specific action is defined.

~This facility permits easy simulation of dial-up terminals which use a
long-space or break to as an interrupt. The interrupt coamand sent fram
receiving Host to sending Host is

INR | link|

the interrupt command sent from receiving Host to sending Host is

INS | 1ink

10

Echoes

Whenever the NCP receives a control command of the form

ECO | length text <

where the length is the length in bits of the text portion, the NCP
must return the text in an ERP command to the sender of the ECO. The
ERP caomnand is identical in format to the ECO camand except for the
opcode.

DECLARATIVE SPECTFICATTIONS

Message Format

A1l regular messages shall have marking; the marking may be of any
length and should be chosen to sult the sender.

Control messages must consist of an integral number of control commands.

The text of a message sent over a commection is part of a continous data
stream, and the message boundry may not be meaningful. Provision is made
for definition of message data types which are 8 bit codes the sender
includes in the text of messages and which notify the receiver what the
meaning of message boundries is and which character set is being used.
The only currently agreed upon message data type is zero, and it specifies
that message boundries convey no information, that the data is an
arbitrary bit string, and that these conditions will prevail for the life
of the commection. It is thus sufficient for the first eight bits of
the text of the first message to be zero in order to satisfy the conven-
tions of message data types. Possible future message data types might
guarantee that a line of input text ended on a message boundary, or

that the ASCII character set 1s in use.

11

Iink Allocation

Link 1 is the control link.

Links 2 through 31, inclusive, are assignable for comections under
this protocol.

Links 192 through 255, inclusive, are-avallable for any experimental
purpose.

Link 0 is used by the IMP programs and will not be assigned.
Links 32 through 191 are reserved for expansion and should not be used.

Control Commands

Each control command begins with an 8 bit opcode. These opcodes have
values of 0, 1, etc. to permit table lookup upon receipt. Private
experimental protocols should be tested using opcodes of 255, 254, etc.
Most of the control commands are more fully explained in the various
sections under NCP FUNCTIONS.

No Operation
8

NOP

The NOP cammand may be sent at any time and should be dlscarded upon
receipt. It consists only of zeroes and may thus be useful for format-
ting command messages.

Request Comnection, Recelver to Sender

8 32 32 8
RTS receive socket send socket link

The RIS camand is used to establish a comnection and is sent from
the Host containing the receive socket to the Host contalining the
send socket. The link is assigned with this command; the link must
be between 2 and 31, inclusive,

12

Request Comnection, Sender to Receiver

8 32 32

STR send socket receive socket

The STR command is used to establish a conmnection and is sent from the

Host contalning the send socket to the Host containing the receive
socket.

Close

8 32 32

CLS my socket ‘ your socket

The CLS comand 1s used to terminate a connection.

Allocate
8 8 32
ALL fpink space

The ALL comand is sent from a receiving Host to a sending Host to
increase the sending Host's space counter. This command may be sent
only while the comnectlon is established.
Give Back
8 8 8

GVB [Link | frac

The GVB command is sent from a receiving Host to a sending Host to
request that the sending Host return all or part of its space allocation.
The frac specifies what portion of the allocation the sending Host may
keep. This command may be sent only while the cormectlon 1s established.

Returning Space

8 8 32
RET fink space

The RET camand is sent from the sending Host to the receiving Host
to return all or a part of its space allocation, either voluntarily, or

in response to a GVB camand or a 10IH message. This command may be
sent only while the commection is established.

13

Interrupt Sent by Recelving Process
8 8

INR | 1inki

The INR comand is sent from the receiving Host to the sending Host
when the receiving process wants to interrupt the sending process.
This command may be sent only while the comnection is established.

Interrupt Sent by Sending Process
8 8

INS | 1ink

The INS command is sent from the sending Host to the receiving Host
when the sending process wants to interrupt the recelving process.
This command may be sent only while the comnection is established.

Echo Request
8 16

ECO | length text i
—

The ECO command is used only for test purposes and does not pertain to
the rest of the protocol. A Host may send one at any time, and should’

expect to receive an ERP command in reply. The length field gives the
length in bits of the text field.

Echo Reply

ERP | length text é

The ERP cammand 1s sent in reply to an ECO command. The length field
glves the length in bits of the text field., The text field must match
the text field of the incoming ECO command.

14

Error Detected
8 16 8

=
ERR | length | code text ;

The ERR command may be sent whenever an error is detected in the input
from another Host. The length field specifies the length of the code
field and the text field. In the case that the error condition has a
predéfined code, the code field specifies the specific error, and the
text field gives parameters. For non-standard errors, the code field
is zero and the text field is idiosyncratic to the sender. Implementers
of Network Control Programs should publish timely information on their
ERR comands in NWG/RFC form.

The followling codes are defined. Additional codes may be defined later.
1. Tllegal Op Code

8 16 8 8

Small part of message following ‘
ERR | length 1 bad op code for identifications 3

Error Bad
Code Op
Code

Op code was encountered in operation deblocking.

2. Short Parameter Space
8 16 8

ERR| length 2 Command in error 5
<

Error
Code

End of message encountered before all expected parameters.

3, Bad Parameter(s)
8 16 8

<
ERR | length 3 Command in Error <=
/

Error

Code

e.g., two receive (send) sockets in an RIS (STR), link nunber not
1<I«33, bad socket polarity within command.

15

4. Request on a Closed (Null) Socket

8 16 - 8

ERR | length b Command in Error E%%

Efror
Code

A request (other than RIS/STR) was made for a non-existent
socket.

5. Socket (Link) not Cormnected

8 16 8
=
ERR | length | 5 Command in Error (\;
Errof
Code

A request which requires a comnected socket (1ink) (i.e., ALL,
%NR, gransmit) was made for an existing but not connected socket
1ink).

Opcodes

RTS
STR
CLS

It =3 H [e9]
HEHEHASE
H W0 o~ AW ESW R O

H o

:

16

1.

| BIBLIOGRAPHY

"Specifications for the Interconnection of a Host and an IMP."
Bolt, Beranak and Newman, Inc. report number 1822, May 1969

Roberts, L. G. and B. D. Wessler, "Computer Network Development
to Achieve Resource Sharing." AFIPS Proceeding of the 1970 SJCC,
pp. 5U3-549

\Heart, F. E., et al, "The Interface Message Processor for the
ARPA Camputer Network." AFTIPS Proceedings of the 1970 SJCC,
pp. 551-567

Kleinrock, L., "Analytic and Simulation Methods in Camputer Network
Design." AFIPS Proceedings of the 1970 SJCC, pp. 569-579

Frank, H., et al, "Topological Considerations in the Design of
the ARPA Network." AFIPS Proceedings of the 1970 SJCC, pp. 581-587

Carr, C. S., et al '"Host-Host Cammunication Protocol in the ARPA
‘Network," AFTPS Proceedings of the 1970 SJCC, pp. 589-597

